Coproducts of Distributive Lattice based Algebras

نویسندگان

  • Leonardo Manuel Cabrer
  • Hilary A. Priestley
چکیده

The analysis of coproducts in varieties of algebras has generally been variety-specific, relying on tools tailored to particular classes of algebras. A recurring theme, however, is the use of a categorical duality. Among the dualities and topological representations in the literature, natural dualities are particularly well behaved with respect to coproduct. Since (multisorted) natural dualities are based on hom-functors, they send coproducts into cartesian products. We carry out a systematic study of coproducts for finitely generated quasivarieties A that admit a (term) reduct in the variety D of bounded distributive lattices. In this setting we present necessary and sufficient conditions on A for the forgetful functor UA from A to D to preserve coproducts. When this is not the case, we demostrat how to obtain the lattice reduct of a coproduct of algebras in A from the lattice reducts of the algebras involved. Our results are based on an in depth analysis of the connection between Priestley duality and multisorted piggyback dualities. Given an algebra A ∈ A we present procedure to recover the Priestley dual of UA(A) from the natural dual of A. We then use this translation and the good behaviour of natural dualities with coproducts to recover distributive lattice reduct of a coproduct of algebras in A. As a byproduct, our work reveals that the type of natural duality that the class A can possess is connected with properties of coproducts in A and the way in which UA behaves with respect to them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to characterization of MV-algebras

By considering the notion of MV-algebras, we recall some results on enumeration of MV-algebras and wecarry out a study on characterization of MV-algebras of orders $2$, $3$, $4$, $5$, $6$ and $7$. We obtain that there is one non-isomorphic MV-algebra of orders $2$, $3$, $5$ and $7$ and two non-isomorphic MV-algebras of orders $4$ and $6$.

متن کامل

Coproducts of bounded distributive lattices: cancellation

Let L ∗ M denote the coproduct of the bounded distributive lattices L and M . At the 1981 Banff Conference on Ordered Sets, the following question was posed: What is the largest class L of finite distributive lattices such that, for every non-trivial Boolean lattice B and every L ∈ L, B ∗ L = B ∗ L′ implies L = L′? In this note, the problem is solved.

متن کامل

Profinite Heyting Algebras and Profinite Completions of Heyting Algebras

This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...

متن کامل

Coproducts of Bounded Distributive Lattices

Let LM denote the coproduct of the bounded distributive lattices L and M. At the 1981 Bann Conference on Ordered Sets, the following question was posed: What is the largest class L of nite distributive lattices such that, for every non-trivial Boolean lattice B and every L 2 L, B L = B L 0 implies L = L 0 ? In this note, the problem is solved.

متن کامل

Commutative pseudo BE-algebras

The aim of this paper is to introduce the notion of commutative pseudo BE-algebras and investigate their properties.We generalize some results proved by A. Walendziak for the case of commutative BE-algebras.We prove that the class of commutative pseudo BE-algebras is equivalent to the class of commutative pseudo BCK-algebras. Based on this result, all results holding for commutative pseudo BCK-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013